源码分析之AsyncTask

AsyncTask在Android中是很常用的异步线程,那么AsyncTask和Thread有什么区别呢?这里将从源码角度深入理解AsyncTask的设计和工作原理

这里的AsyncTask基于SDK-25

分析知识准备

首先我们来看一个生产者与消费者模型的例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
public class ThreadTest {

//产品
static class ProductObject{
public volatile static String value; //volatile线程操作变量可见
}

//生产者线程
static class Producer extends Thread{
Object lock;
public Producer(Object lock) {
this.lock = lock;
}
@Override
public void run() {
while(true){
synchronized (lock) {
if(ProductObject.value != null){
try {
lock.wait(); //产品还没有被消费,等待
} catch (InterruptedException e) {
e.printStackTrace();
}
}
ProductObject.value = "NO:"+System.currentTimeMillis();
System.out.println("生产产品:"+ProductObject.value);
lock.notify(); //生产完成,通知消费者消费
}
}
}
}

//消费者线程
static class Consumer extends Thread{
Object lock;
public Consumer(Object lock) {
this.lock = lock;
}
@Override
public void run() {
while(true){
synchronized (lock) {
if(ProductObject.value == null){
try {
lock.wait(); //等待,阻塞
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("消费产品:"+ProductObject.value);
ProductObject.value = null;
lock.notify(); //消费完成,通知生产者,继续生产
}
}
}
}


public static void main(String[] args) {
Object lock = new Object();
new Producer(lock).start();
new Consumer(lock).start();
}
}

上面的例子关键点在于两个,其一是volatile,使得线程间可见,第二个点在于互斥锁,这样就可以使得有商品的时候就要通知消费者消费,同时wait,那么消费者收到消息开始消费,消费完毕通知生产者继续生产,从而不断生产,这样比轮询方式更加节省资源
在了解完上面的例子以后,我们就可以着手分析AsyncTask的源代码了
首先,我们在AsyncTask首先看其构造方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
private final WorkerRunnable<Params, Result> mWorker;
private final FutureTask<Result> mFuture;
···
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Result result = null;
try {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
result = doInBackground(mParams);
Binder.flushPendingCommands();
} catch (Throwable tr) {
mCancelled.set(true);
throw tr;
} finally {
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}

这里首先给WorkerRunnableFuture进行了初始化,那么为何要初始化这两个变量呢?
这里就要说到常用的两个方法了,doInBackground(),这个方法是在子线程里面完成的,另一个方法就是onPostExecute(),而这个方法是存在于主线程的,那么也就是说子线程执行完将执行的结果传递到了主线程中,实现了线程间的通信,那么最关键的问题来了,这个通信是怎么实现的呢?
通常在子线程中执行的任务,是没有返回结果的,例如Runnable的源代码如下,就没有返回结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}

那么,要怎么才能得到返回值呢,这里首先想到的就是Callable接口,那么再看看Callable的源代码

1
2
3
4
5
6
7
8
9
10
@FunctionalInterface
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

可以看到,这是一个泛型方法,是有返回值的,但是其本身确是不能直接执行的,需要借助其他类,接下来再看一看源代码中涉及到的Future接口

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
public interface Future<V> {

/**
* Attempts to cancel execution of this task. This attempt will
* fail if the task has already completed, has already been cancelled,
* or could not be cancelled for some other reason. If successful,
* and this task has not started when {@code cancel} is called,
* this task should never run. If the task has already started,
* then the {@code mayInterruptIfRunning} parameter determines
* whether the thread executing this task should be interrupted in
* an attempt to stop the task.
*
* <p>After this method returns, subsequent calls to {@link #isDone} will
* always return {@code true}. Subsequent calls to {@link #isCancelled}
* will always return {@code true} if this method returned {@code true}.
*
* @param mayInterruptIfRunning {@code true} if the thread executing this
* task should be interrupted; otherwise, in-progress tasks are allowed
* to complete
* @return {@code false} if the task could not be cancelled,
* typically because it has already completed normally;
* {@code true} otherwise
*/
boolean cancel(boolean mayInterruptIfRunning);

/**
* Returns {@code true} if this task was cancelled before it completed
* normally.
*
* @return {@code true} if this task was cancelled before it completed
*/
boolean isCancelled();

/**
* Returns {@code true} if this task completed.
*
* Completion may be due to normal termination, an exception, or
* cancellation -- in all of these cases, this method will return
* {@code true}.
*
* @return {@code true} if this task completed
*/
boolean isDone();

/**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread was interrupted
* while waiting
*/
V get() throws InterruptedException, ExecutionException;

/**
* Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result, if available.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread was interrupted
* while waiting
* @throws TimeoutException if the wait timed out
*/
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

Future类中,有好几个方法,而这些方法都是有返回值的,那么RunnableFutureFutureTask有什么关系呢,产看源码便可得知,FutureTask实际上是实现了RunnableFuture接口

1
2
3
public class FutureTask<V> implements RunnableFuture<V>{
···
}

RunnableFuture又继承了RunnableFuture

1
2
3
public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}

那也就是说,FutureTask既可以在子线程中执行,也可以获得执行结果,下面使用一个例子来说明FutureTask

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class FutureTest {

public static void main(String[] args) {
Task work = new Task();
FutureTask<Integer> future = new FutureTask<Integer>(work){
@Override
protected void done() { //异步任务执行完成,回调
try {
System.out.println("done:" + get()); //get()获取异步任务的返回值,这是个阻塞方法
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
};
//线程池(使用了预定义的配置)
ExecutorService executor = Executors.newCachedThreadPool();
executor.execute(future);
}

//异步任务
static class Task implements Callable<Integer>{

@Override
public Integer call() throws Exception {//返回异步任务的执行结果
int i = 0;
for (; i < 10; i++) {
try {
System.out.println(Thread.currentThread().getName() + "_" + i);
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return i;
}
}
}

上面的例子可以看出,在使用了Callable的时候,需要借助FutureTask来包装,然后使用Executorexecute()方法来执行,那么是怎么得到异步任务的返回值呢,在上面的例子中,我们可以看到,其返回值的获取是通过future.get()得到的,然而这个get()方法确是被阻塞的,只有在异步任务完成的时候才能获取到其结果,那我们怎么才能知道异步任务时候执行完毕呢,这里就可以实现FutureTaskdone()方法,当异步任务执行完毕以后会回调这个方法,上述例子其实解释了AsyncTask的实现逻辑,call()方法是在子线程中完成,这也就是doInBackground()的实现,在主线程中获得结果,这是在onPostExecute()使用了get()方法,那也就是说AsyncTask就是通过这一套方法去实现的

从这里我们可以总结出FutureTask为异步任务提供了诸多便利性,包括

  1. 获取异步任务的返回值
  2. 监听异步任务的执行情况
  3. 取消异步任务

那么在AsyncTask中,WorkerRunnable又是啥呢,其实就是一个内部类,对Callable进行了封装

1
2
3
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}

源代码分析

有了以上知识储备,我们就可以动手分析AsyncTask源代码了
拿到源代码,不同的人有不同的分析习惯,这里我按照我的习惯对源代码进行一次分析

构造方法分析

首先,因为我们分析源代码是为了更好的去使用,而使用的话,第一个关注的就应该是构造方法,回到之前的的构造方法,这里要开始对构造方法开始入手分析了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
private final WorkerRunnable<Params, Result> mWorker;
private final FutureTask<Result> mFuture;
private final AtomicBoolean mCancelled = new AtomicBoolean();
private final AtomicBoolean mTaskInvoked = new AtomicBoolean();
···
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
//设置线程调用
mTaskInvoked.set(true);
Result result = null;
try {
//设置线程优先级,其给定值为10
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//调用doInBackground()方法得到返回值
result = doInBackground(mParams);
//将当前线程中的Binder命令发送至kernel
Binder.flushPendingCommands();
} catch (Throwable tr) {
//发生异常则取消线程调用设置
mCancelled.set(true);
throw tr;
} finally {
//执行postResult()方法
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
//执行postResultIfNotInvoked()方法
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}

以上就是AsyncTask的构造方法了,在构造方法上有一句说明,这个构造方法必须在UI线程中创建,这一点很好理解,因为其有需要再主线程中执行的地方,后面会说到,那么这个构造方法干了什么事情呢,很简单,这里新建了两个对象,首先是WorkerRunnable,而这个WorkerRunnable则是实现自Callable接口,主要是要使用其call()方法,为了返回参数,并没有什么特别之处,再其内部则实现了call()方法,而其自生是无法执行的,需要找一个包装类,而这个包装类就是FutureTask,通过之前的分析,这里就不再多赘述关于FutureTask的东西了,这里实现了done()方法,也就是线程执行完毕调用的方法,简单点来说就是在call()方法中执行,在done()中获得执行的返回结果,上述涉及到一个内部类和三个自定义的方法,那么接下来我们看一看这个内部类和三个方法都干了啥

构造方法中出现的内部类

这里的WorkerRunnable,正如前面所说,这里除了实现Callable就啥也没干,还是个抽象方法,这里将实现放在了构造方法中

1
2
3
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}

构造方法中调用的方法

首先是doInBackground()方法,前面讲到,这个方法在子线程中完成,那么这里的子线程是哪个呢,其实就是WorkerThread,这个方法是一个抽象方法,放在子线程中执行,其具体实现由调用者完成

1
2
@WorkerThread
protected abstract Result doInBackground(Params... params);

再看postResult()方法,这里获取了一个Handler,然后发送了一个消息,这里就是子线程能够通信主线程的地方了

1
2
3
4
5
6
7
private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}

那么到这里,我们关注的重点就来了,子线程是怎么告诉主线程的呢,要知道其中的原因,我们就需要去看看代码里面是怎么实现的
我们先看发送了什么消息,也就是AsyncTaskResult里面干了啥,查看代码发现,其就是做了参数传递的任务

1
2
3
4
5
6
7
8
9
10
@SuppressWarnings({"RawUseOfParameterizedType"})
private static class AsyncTaskResult<Data> {
final AsyncTask mTask;
final Data[] mData;

AsyncTaskResult(AsyncTask task, Data... data) {
mTask = task;
mData = data;
}
}

那么接下来的重点就是getHandler()方法了,这里拿到AsyncTask.class就上了锁了,这也很好理解,不上锁其他线程走到这里会产生安全隐患,然后返回sHandler,那再继续看看InternalHandler又是个什么吧

1
2
3
4
5
6
7
8
9
10
private static InternalHandler sHandler;
···
private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}

这里就是了,在构造方法里面super(Looper.getMainLooper()),也就说明了这个方法是在主线程中执行的,在主线程中对Message进行处理,这里又涉及到两个方法,一个是finish(),还有一个是onProgressUpdate(),那么好吧,再去看看这两个方法在干啥

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
private static final int MESSAGE_POST_RESULT = 0x1;
private static final int MESSAGE_POST_PROGRESS = 0x2;
···
private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}

@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}

首先是又调了isCancelled(),判断是否取消,前面构造函数的时候见过这个,这是在异常发生的时候才设置为true的,那么如果不发生异常,这里应该就是为false的,但在找源代码时发现,另一个方法也对这个参数进行了设置,那就是cancel(),所以在不发生异常和取消的时候应该是为true的,接下来是onCancelled()方法,这里是不做任何操作的,这也是主线程中的方法,还有就是onPostExecute()方法,然后会设置状态,其默认状态是PENDING

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private volatile Status mStatus = Status.PENDING;
···
public enum Status {
PENDING,
RUNNING,
FINISHED,
}
···
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onPostExecute(Result result) {
}

@SuppressWarnings({"UnusedParameters"})
@MainThread
protected void onCancelled(Result result) {
onCancelled();
}

@MainThread
protected void onCancelled() {
}

public final boolean isCancelled() {
return mCancelled.get();
}
···
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

然后是onProgressUpdate()方法,那么这里做了啥呢,嗯~啥也没有,交给调用者在继承时可以使用

1
2
3
4
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onProgressUpdate(Progress... values) {
}

来看构造方法中涉及到的最后一个方法postResultIfNotInvoked(),这个方法又干了啥了,首先获得了mTaskInvoked的状态,整个AsyncTask只有构造方法处设置了这个值,然后判断是否执行postResult()方法

1
2
3
4
5
6
private void postResultIfNotInvoked(Result result) {
final boolean wasTaskInvoked = mTaskInvoked.get();
if (!wasTaskInvoked) {
postResult(result);
}
}

至此构造方法分析完成,可以看到在构造方法中,其主要做的工作最主要的就是搭建好了子线程和主线程沟通的桥梁

执行入口分析

在新建AsyncTask对象以后,要执行的话,需要使用execute()去开始执行
那么我们就从这里入手,看看其具体是怎么工作的,可以看到无论是构造方法还是启动方法,都是需要在主线程中完成的,在execute()中,做了些什么呢,在这之前我们先看看传递的sDefaultExecutor是啥

1
2
3
4
@MainThread
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}

这其实是一个线程池,任务调度的线程池,可以看到SerialExecutor实际上是实现了Executor接口,其作用就是将任务添加到双向队列,然后不断地取出执行取出执行,那么THREAD_POOL_EXECUTOR也应该是一个线程池,那这又是啥呢,去看一看这个玩意儿就是到了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
···
private static class SerialExecutor implements Executor {
//定义了一个双向队列,用来存储线程
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;

public synchronized void execute(final Runnable r) {
//向队列中添加线程
mTasks.offer(new Runnable() {
public void run() {
try {
//线程运行
r.run();
} finally {
//执行scheduleNext()方法
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}

//从队列中取出线程并执行
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}

下列代码就是初始化了线程池的参数,指定了线程数量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//获得可用CPU数量
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
//设置核心线程池数量其范围[2,4],无论是否使用都存在
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
//设置最大线程数量
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
//设置闲置回收时间,也就是说线程在这个时间内没有活动的话,会被回收
private static final int KEEP_ALIVE_SECONDS = 30;
//设置线程工厂,通过这个创建线程
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
//创建线程安全的线程个数计数器
private final AtomicInteger mCount = new AtomicInteger(1);

public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
//设置任务队列大小
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
//设置线程池
public static final Executor THREAD_POOL_EXECUTOR;

//初始化线程池
static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
//打开核心线程池的超时时间
threadPoolExecutor.allowCoreThreadTimeOut(true);
THREAD_POOL_EXECUTOR = threadPoolExecutor;
}

所以在执行scheduleNext()的时候,会将THREAD_POOL_EXECUTOR中设置好的线程全部取出来,用来执行后面的任务,其执行的任务就是execute()方法所指定的任务,在executeOnExecutor()方法中,由于前面初始化完成,这里的状态应该是PENDING,之后还设置了mWorker的参数,然后会执行线程池的方法,然后据开始执行任务了,前面没有涉及到的方法还有一个,那我们接下来看看

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@MainThread
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}

onPreExecute(),这个方法由调用者在继承时候能够使用

1
2
3
@MainThread
protected void onPreExecute() {
}

至此,AsyncTask的执行方法也分析完了,那么我们接下来看看还有什么方法没有涉及到,没有涉及到的方法都是public属性和方法

AsyncTask的公共方法

1
2
3
4
//这个方法设置为public,那么就意味着我们可以自定义线程池
public static void setDefaultExecutor(Executor exec) {
sDefaultExecutor = exec;
}
1
2
3
4
5
6
7
8
9
10
//这个方法意味着我们可以获得其状态,配合枚举值使用
public enum Status {
PENDING,
RUNNING,
FINISHED,
}
···
public final Status getStatus() {
return mStatus;
}
1
2
3
4
//查看是非被取消
public final boolean isCancelled() {
return mCancelled.get();
}
1
2
3
4
5
//取消异步任务
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}
1
2
3
4
//获取返回结果,注意:这个方法是阻塞式的
public final Result get() throws InterruptedException, ExecutionException {
return mFuture.get();
}
1
2
3
4
5
//同上
public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
ExecutionException, TimeoutException {
return mFuture.get(timeout, unit);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//自定义的线程池可以从这个方法启动
@MainThread
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}
1
2
3
4
5
//使用默认线程池启动异步任务
@MainThread
public static void execute(Runnable runnable) {
sDefaultExecutor.execute(runnable);
}

总结

AsyncTask的实例化过程,其本质上就是实例化了一个FutureTask

其执行过程Executor.execute(mFuture) -> SerialExecutor.mTasks(队列) -> (线程池)THREAD_POOL_EXECUTOR.execute

线程池中的所有线程,为了执行异步任务

如果当前线程池中的数量小于corePoolSize,创建并添加的任务
如果当前线程池中的数量等于corePoolSize,缓冲队列workQueue未满,那么任务被放入缓冲队列、等待任务调度执行
如果当前线程池中的数量大于corePoolSize,缓冲队列workQueue已满,并且线程池中的数量小于maximumPoolSize,新提交任务会创建新线程执行任务
如果当前线程池中的数量大于corePoolSize,缓冲队列workQueue已满,并且线程池中的数量等于maximumPoolSize,新提交任务由Handler处理
当线程池中的线程大于corePoolSize时,多余线程空闲时间超过keepAliveTime时,会关闭这部分线程

线程池在添加时候是串行的,在执行任务的时候是并行的

附录(源代码)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
package android.os;

import android.annotation.MainThread;
import android.annotation.WorkerThread;

import java.util.ArrayDeque;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/**
* <p>AsyncTask enables proper and easy use of the UI thread. This class allows you
* to perform background operations and publish results on the UI thread without
* having to manipulate threads and/or handlers.</p>
*
* <p>AsyncTask is designed to be a helper class around {@link Thread} and {@link Handler}
* and does not constitute a generic threading framework. AsyncTasks should ideally be
* used for short operations (a few seconds at the most.) If you need to keep threads
* running for long periods of time, it is highly recommended you use the various APIs
* provided by the <code>java.util.concurrent</code> package such as {@link Executor},
* {@link ThreadPoolExecutor} and {@link FutureTask}.</p>
*
* <p>An asynchronous task is defined by a computation that runs on a background thread and
* whose result is published on the UI thread. An asynchronous task is defined by 3 generic
* types, called <code>Params</code>, <code>Progress</code> and <code>Result</code>,
* and 4 steps, called <code>onPreExecute</code>, <code>doInBackground</code>,
* <code>onProgressUpdate</code> and <code>onPostExecute</code>.</p>
*
* <div class="special reference">
* <h3>Developer Guides</h3>
* <p>For more information about using tasks and threads, read the
* <a href="{@docRoot}guide/components/processes-and-threads.html">Processes and
* Threads</a> developer guide.</p>
* </div>
*
* <h2>Usage</h2>
* <p>AsyncTask must be subclassed to be used. The subclass will override at least
* one method ({@link #doInBackground}), and most often will override a
* second one ({@link #onPostExecute}.)</p>
*
* <p>Here is an example of subclassing:</p>
* <pre class="prettyprint">
* private class DownloadFilesTask extends AsyncTask&lt;URL, Integer, Long&gt; {
* protected Long doInBackground(URL... urls) {
* int count = urls.length;
* long totalSize = 0;
* for (int i = 0; i < count; i++) {
* totalSize += Downloader.downloadFile(urls[i]);
* publishProgress((int) ((i / (float) count) * 100));
* // Escape early if cancel() is called
* if (isCancelled()) break;
* }
* return totalSize;
* }
*
* protected void onProgressUpdate(Integer... progress) {
* setProgressPercent(progress[0]);
* }
*
* protected void onPostExecute(Long result) {
* showDialog("Downloaded " + result + " bytes");
* }
* }
* </pre>
*
* <p>Once created, a task is executed very simply:</p>
* <pre class="prettyprint">
* new DownloadFilesTask().execute(url1, url2, url3);
* </pre>
*
* <h2>AsyncTask's generic types</h2>
* <p>The three types used by an asynchronous task are the following:</p>
* <ol>
* <li><code>Params</code>, the type of the parameters sent to the task upon
* execution.</li>
* <li><code>Progress</code>, the type of the progress units published during
* the background computation.</li>
* <li><code>Result</code>, the type of the result of the background
* computation.</li>
* </ol>
* <p>Not all types are always used by an asynchronous task. To mark a type as unused,
* simply use the type {@link Void}:</p>
* <pre>
* private class MyTask extends AsyncTask&lt;Void, Void, Void&gt; { ... }
* </pre>
*
* <h2>The 4 steps</h2>
* <p>When an asynchronous task is executed, the task goes through 4 steps:</p>
* <ol>
* <li>{@link #onPreExecute()}, invoked on the UI thread before the task
* is executed. This step is normally used to setup the task, for instance by
* showing a progress bar in the user interface.</li>
* <li>{@link #doInBackground}, invoked on the background thread
* immediately after {@link #onPreExecute()} finishes executing. This step is used
* to perform background computation that can take a long time. The parameters
* of the asynchronous task are passed to this step. The result of the computation must
* be returned by this step and will be passed back to the last step. This step
* can also use {@link #publishProgress} to publish one or more units
* of progress. These values are published on the UI thread, in the
* {@link #onProgressUpdate} step.</li>
* <li>{@link #onProgressUpdate}, invoked on the UI thread after a
* call to {@link #publishProgress}. The timing of the execution is
* undefined. This method is used to display any form of progress in the user
* interface while the background computation is still executing. For instance,
* it can be used to animate a progress bar or show logs in a text field.</li>
* <li>{@link #onPostExecute}, invoked on the UI thread after the background
* computation finishes. The result of the background computation is passed to
* this step as a parameter.</li>
* </ol>
*
* <h2>Cancelling a task</h2>
* <p>A task can be cancelled at any time by invoking {@link #cancel(boolean)}. Invoking
* this method will cause subsequent calls to {@link #isCancelled()} to return true.
* After invoking this method, {@link #onCancelled(Object)}, instead of
* {@link #onPostExecute(Object)} will be invoked after {@link #doInBackground(Object[])}
* returns. To ensure that a task is cancelled as quickly as possible, you should always
* check the return value of {@link #isCancelled()} periodically from
* {@link #doInBackground(Object[])}, if possible (inside a loop for instance.)</p>
*
* <h2>Threading rules</h2>
* <p>There are a few threading rules that must be followed for this class to
* work properly:</p>
* <ul>
* <li>The AsyncTask class must be loaded on the UI thread. This is done
* automatically as of {@link android.os.Build.VERSION_CODES#JELLY_BEAN}.</li>
* <li>The task instance must be created on the UI thread.</li>
* <li>{@link #execute} must be invoked on the UI thread.</li>
* <li>Do not call {@link #onPreExecute()}, {@link #onPostExecute},
* {@link #doInBackground}, {@link #onProgressUpdate} manually.</li>
* <li>The task can be executed only once (an exception will be thrown if
* a second execution is attempted.)</li>
* </ul>
*
* <h2>Memory observability</h2>
* <p>AsyncTask guarantees that all callback calls are synchronized in such a way that the following
* operations are safe without explicit synchronizations.</p>
* <ul>
* <li>Set member fields in the constructor or {@link #onPreExecute}, and refer to them
* in {@link #doInBackground}.
* <li>Set member fields in {@link #doInBackground}, and refer to them in
* {@link #onProgressUpdate} and {@link #onPostExecute}.
* </ul>
*
* <h2>Order of execution</h2>
* <p>When first introduced, AsyncTasks were executed serially on a single background
* thread. Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed
* to a pool of threads allowing multiple tasks to operate in parallel. Starting with
* {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are executed on a single
* thread to avoid common application errors caused by parallel execution.</p>
* <p>If you truly want parallel execution, you can invoke
* {@link #executeOnExecutor(java.util.concurrent.Executor, Object[])} with
* {@link #THREAD_POOL_EXECUTOR}.</p>
*/
public abstract class AsyncTask<Params, Progress, Result> {
private static final String LOG_TAG = "AsyncTask";

private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
// We want at least 2 threads and at most 4 threads in the core pool,
// preferring to have 1 less than the CPU count to avoid saturating
// the CPU with background work
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE_SECONDS = 30;

private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);

public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};

private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);

/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR;

static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
threadPoolExecutor.allowCoreThreadTimeOut(true);
THREAD_POOL_EXECUTOR = threadPoolExecutor;
}

/**
* An {@link Executor} that executes tasks one at a time in serial
* order. This serialization is global to a particular process.
*/
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();

private static final int MESSAGE_POST_RESULT = 0x1;
private static final int MESSAGE_POST_PROGRESS = 0x2;

private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static InternalHandler sHandler;

private final WorkerRunnable<Params, Result> mWorker;
private final FutureTask<Result> mFuture;

private volatile Status mStatus = Status.PENDING;

private final AtomicBoolean mCancelled = new AtomicBoolean();
private final AtomicBoolean mTaskInvoked = new AtomicBoolean();

private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;

public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}

protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}

/**
* Indicates the current status of the task. Each status will be set only once
* during the lifetime of a task.
*/
public enum Status {
/**
* Indicates that the task has not been executed yet.
*/
PENDING,
/**
* Indicates that the task is running.
*/
RUNNING,
/**
* Indicates that {@link AsyncTask#onPostExecute} has finished.
*/
FINISHED,
}

private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}

/** @hide */
public static void setDefaultExecutor(Executor exec) {
sDefaultExecutor = exec;
}

/**
* Creates a new asynchronous task. This constructor must be invoked on the UI thread.
*/
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Result result = null;
try {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
result = doInBackground(mParams);
Binder.flushPendingCommands();
} catch (Throwable tr) {
mCancelled.set(true);
throw tr;
} finally {
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}

private void postResultIfNotInvoked(Result result) {
final boolean wasTaskInvoked = mTaskInvoked.get();
if (!wasTaskInvoked) {
postResult(result);
}
}

private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}

/**
* Returns the current status of this task.
*
* @return The current status.
*/
public final Status getStatus() {
return mStatus;
}

/**
* Override this method to perform a computation on a background thread. The
* specified parameters are the parameters passed to {@link #execute}
* by the caller of this task.
*
* This method can call {@link #publishProgress} to publish updates
* on the UI thread.
*
* @param params The parameters of the task.
*
* @return A result, defined by the subclass of this task.
*
* @see #onPreExecute()
* @see #onPostExecute
* @see #publishProgress
*/
@WorkerThread
protected abstract Result doInBackground(Params... params);

/**
* Runs on the UI thread before {@link #doInBackground}.
*
* @see #onPostExecute
* @see #doInBackground
*/
@MainThread
protected void onPreExecute() {
}

/**
* <p>Runs on the UI thread after {@link #doInBackground}. The
* specified result is the value returned by {@link #doInBackground}.</p>
*
* <p>This method won't be invoked if the task was cancelled.</p>
*
* @param result The result of the operation computed by {@link #doInBackground}.
*
* @see #onPreExecute
* @see #doInBackground
* @see #onCancelled(Object)
*/
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onPostExecute(Result result) {
}

/**
* Runs on the UI thread after {@link #publishProgress} is invoked.
* The specified values are the values passed to {@link #publishProgress}.
*
* @param values The values indicating progress.
*
* @see #publishProgress
* @see #doInBackground
*/
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onProgressUpdate(Progress... values) {
}

/**
* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
* {@link #doInBackground(Object[])} has finished.</p>
*
* <p>The default implementation simply invokes {@link #onCancelled()} and
* ignores the result. If you write your own implementation, do not call
* <code>super.onCancelled(result)</code>.</p>
*
* @param result The result, if any, computed in
* {@link #doInBackground(Object[])}, can be null
*
* @see #cancel(boolean)
* @see #isCancelled()
*/
@SuppressWarnings({"UnusedParameters"})
@MainThread
protected void onCancelled(Result result) {
onCancelled();
}

/**
* <p>Applications should preferably override {@link #onCancelled(Object)}.
* This method is invoked by the default implementation of
* {@link #onCancelled(Object)}.</p>
*
* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
* {@link #doInBackground(Object[])} has finished.</p>
*
* @see #onCancelled(Object)
* @see #cancel(boolean)
* @see #isCancelled()
*/
@MainThread
protected void onCancelled() {
}

/**
* Returns <tt>true</tt> if this task was cancelled before it completed
* normally. If you are calling {@link #cancel(boolean)} on the task,
* the value returned by this method should be checked periodically from
* {@link #doInBackground(Object[])} to end the task as soon as possible.
*
* @return <tt>true</tt> if task was cancelled before it completed
*
* @see #cancel(boolean)
*/
public final boolean isCancelled() {
return mCancelled.get();
}

/**
* <p>Attempts to cancel execution of this task. This attempt will
* fail if the task has already completed, already been cancelled,
* or could not be cancelled for some other reason. If successful,
* and this task has not started when <tt>cancel</tt> is called,
* this task should never run. If the task has already started,
* then the <tt>mayInterruptIfRunning</tt> parameter determines
* whether the thread executing this task should be interrupted in
* an attempt to stop the task.</p>
*
* <p>Calling this method will result in {@link #onCancelled(Object)} being
* invoked on the UI thread after {@link #doInBackground(Object[])}
* returns. Calling this method guarantees that {@link #onPostExecute(Object)}
* is never invoked. After invoking this method, you should check the
* value returned by {@link #isCancelled()} periodically from
* {@link #doInBackground(Object[])} to finish the task as early as
* possible.</p>
*
* @param mayInterruptIfRunning <tt>true</tt> if the thread executing this
* task should be interrupted; otherwise, in-progress tasks are allowed
* to complete.
*
* @return <tt>false</tt> if the task could not be cancelled,
* typically because it has already completed normally;
* <tt>true</tt> otherwise
*
* @see #isCancelled()
* @see #onCancelled(Object)
*/
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

/**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return The computed result.
*
* @throws CancellationException If the computation was cancelled.
* @throws ExecutionException If the computation threw an exception.
* @throws InterruptedException If the current thread was interrupted
* while waiting.
*/
public final Result get() throws InterruptedException, ExecutionException {
return mFuture.get();
}

/**
* Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result.
*
* @param timeout Time to wait before cancelling the operation.
* @param unit The time unit for the timeout.
*
* @return The computed result.
*
* @throws CancellationException If the computation was cancelled.
* @throws ExecutionException If the computation threw an exception.
* @throws InterruptedException If the current thread was interrupted
* while waiting.
* @throws TimeoutException If the wait timed out.
*/
public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
ExecutionException, TimeoutException {
return mFuture.get(timeout, unit);
}

/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*
* <p>Note: this function schedules the task on a queue for a single background
* thread or pool of threads depending on the platform version. When first
* introduced, AsyncTasks were executed serially on a single background thread.
* Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed
* to a pool of threads allowing multiple tasks to operate in parallel. Starting
* {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being
* executed on a single thread to avoid common application errors caused
* by parallel execution. If you truly want parallel execution, you can use
* the {@link #executeOnExecutor} version of this method
* with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings
* on its use.
*
* <p>This method must be invoked on the UI thread.
*
* @param params The parameters of the task.
*
* @return This instance of AsyncTask.
*
* @throws IllegalStateException If {@link #getStatus()} returns either
* {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
*
* @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
* @see #execute(Runnable)
*/
@MainThread
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}

/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*
* <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to
* allow multiple tasks to run in parallel on a pool of threads managed by
* AsyncTask, however you can also use your own {@link Executor} for custom
* behavior.
*
* <p><em>Warning:</em> Allowing multiple tasks to run in parallel from
* a thread pool is generally <em>not</em> what one wants, because the order
* of their operation is not defined. For example, if these tasks are used
* to modify any state in common (such as writing a file due to a button click),
* there are no guarantees on the order of the modifications.
* Without careful work it is possible in rare cases for the newer version
* of the data to be over-written by an older one, leading to obscure data
* loss and stability issues. Such changes are best
* executed in serial; to guarantee such work is serialized regardless of
* platform version you can use this function with {@link #SERIAL_EXECUTOR}.
*
* <p>This method must be invoked on the UI thread.
*
* @param exec The executor to use. {@link #THREAD_POOL_EXECUTOR} is available as a
* convenient process-wide thread pool for tasks that are loosely coupled.
* @param params The parameters of the task.
*
* @return This instance of AsyncTask.
*
* @throws IllegalStateException If {@link #getStatus()} returns either
* {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
*
* @see #execute(Object[])
*/
@MainThread
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}

mStatus = Status.RUNNING;

onPreExecute();

mWorker.mParams = params;
exec.execute(mFuture);

return this;
}

/**
* Convenience version of {@link #execute(Object...)} for use with
* a simple Runnable object. See {@link #execute(Object[])} for more
* information on the order of execution.
*
* @see #execute(Object[])
* @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
*/
@MainThread
public static void execute(Runnable runnable) {
sDefaultExecutor.execute(runnable);
}

/**
* This method can be invoked from {@link #doInBackground} to
* publish updates on the UI thread while the background computation is
* still running. Each call to this method will trigger the execution of
* {@link #onProgressUpdate} on the UI thread.
*
* {@link #onProgressUpdate} will not be called if the task has been
* canceled.
*
* @param values The progress values to update the UI with.
*
* @see #onProgressUpdate
* @see #doInBackground
*/
@WorkerThread
protected final void publishProgress(Progress... values) {
if (!isCancelled()) {
getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
new AsyncTaskResult<Progress>(this, values)).sendToTarget();
}
}

private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}

private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}

@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}

private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}

@SuppressWarnings({"RawUseOfParameterizedType"})
private static class AsyncTaskResult<Data> {
final AsyncTask mTask;
final Data[] mData;

AsyncTaskResult(AsyncTask task, Data... data) {
mTask = task;
mData = data;
}
}
}
Donate comment here